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1. INTRODUCTION

The success of the Euclidean strategy in constructive quantum field theory
(QFT) in the 1970s in many aspects was due to the formal analogy of
Euclidean QFT with classical statistical mechanics, cf. ref. 1 and references
therein. This analogy has been used in technically different approaches, as
e.g., the lattice approximation, (1) the identification of the (massive) sine-
Gordon model with the Coulomb (Yukawa) gas (2, 3) or, more recently, the
polymer resp. random walk representation (4) resp. ref. 5. In the present
letter we introduce a new and conceptually different representation of
Euclidean quantum fields by the means of systems of classical continuous
particles in the grand canonical ensemble (GCE).
In ref. 6 it was realized that a Poissonization of the natural stochastic

partial pseudo-differential equation associated to the Euclidean Bosonic
free field (7) leads to a new, in general not reflection positive, Euclidean
QFT which however permits an analytic continuation (in the sense of
quantum fields with indefinite metric (8)) from imaginary Euclidean time to



real, relativistic time. Here we show that these Poisson Euclidean quantum
fields can be identified with a noninteracting particle system in the grand
canonical ensemble (Section 2).
Furthermore, using that the path-properties of Poisson Euclidean

QFTs are more regular than in the standard Gaussian case, we introduce a
class of ultra-violet (UV) finite, local interactions (in arbitrary dimension)
for these models. On the level of classical particles moving in continuous
space-time and described in the GCE, such field-theoretic interactions can
be interpreted as a potential energy in the classical Hamiltonian of the
n-particle system (Section 3).
Finally we identify a scaling limit under which the interacting Poisson

Euclidean QFTs formally converge to the related perturbed Gaussian
models. On the level of particle systems this corresponds to a scaling of
activity and charge, while on the level of quantum fields there is a strong
formal analogy with the block-spin formulation of the renormalization
group, see e.g., ref. 5. We identify the change of path-properties under this
limit and we give arguments to show, how in some simple situations this
can be seen as a source of triviality, from which the necessity of a nontrivial
renormalization arises (Section 4).

2. CONVOLUTED POISSON NOISE

Let d \ 2 be the space-time dimension. The Euclidean (neutral, scalar,
Bosonic) free field fg0(x), x ¥ Rd, (7) of mass m > 0 in d dimensions3 can be

3 The subscript zero in this letter stands for noninteracting fields, not for time zero fields.

obtained from the stochastic pseudo differential equation

(−D+m2)1/2 fg0(x)=g
g
0(x) (1)

where gg0 is a Gaussian white noise of intensity s > 0, i.e., a centered Gaus-
sian random field with covariance function s2 d(x−y). Let G(x) be the
Green’s function associated to (−D+m2)1/2, then fg0(x)=G f gg0(x) defines
a pathwise solution of (1), i.e., a solution for any fixed random parameter.
The convolution G f gg0(x) is well-defined, since by Minlos’ theorem (9)
gg0(x) is a (random) tempered distribution and (−D+m

2)1/2 is continuously
invertible on the space of tempered distributions.
Equation (1) can be modified by replacing the noise gg0 by a Poisson

noise as follows: For a bounded region L ı Rd we define the Poisson noise
random field on L as

g0, L(x)=C
NzL

j=1
SL, j d(x−YL, j) (2)
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where NzL is a Poisson random variable with intensity z |L|, i.e., P{N
z
L=n}

=e−z |L|(z |L|)n/n!. The parameter z > 0 is called the activity of the noise.
{SL, j}j ¥N is a family of independently identically distributed (i.i.d.) real-
valued random variables with distribution given by a probability measure r
on R. For simplicity we assume that supp r ı [−c, c] for some c > 0.
Finally, {YL, j}j ¥N is a family of Rd-valued i.i.d. random variables distrib-
uted according to the uniform distribution on L.
We chose Ln ı Rd a sequence of bounded, disjoint subsets of Rd such

that 1.

n=1 Ln=Rd. We then define

g0(x)=C
.

n=1
g0, Ln (x) (3)

where the noises g0, Ln (x) are independent from each other for different n.
One can verify4 that the so-defined Poisson noise g0(x) does not depend on

4 One way to see this is to calculate the Fourier transform of Og0, fP, f a Schwartz test func-
tion, and show that it does not depend on Ln. The statement then follows from the unique-
ness result of Minlos’ theorem, (9) cf. Section 3.2 of ref. 10 for the details.

the choice of the sets Ln and that the restriction of g0(x) to a bounded set
L ı Rd has a representation (2). Furthermore, Og0, fP=>Rd g0(x) f(x) dx
for any Schwartz test function f exists with probability one, since g0(x)
with probability one is polynomially bounded, as a consequence of the
Borel–Cantelli lemma. Og0, fP has infinitely divisible (probability) law and
Og0, fP and Og0, hP are independent from each other whenever the test
functions f and h have disjoint support. Also, g0(x) is invariant under
Euclidean transformations (translations, reflections and rotations) in law.
These properties, which trivially also hold for the Gaussian white noise

gg0(x), show that from a mathematical point of view a legitimate modifica-
tion of Eq. (1) is obtained if we replace the Gaussian noise gg0(x) in (1) with
g0(x). The solution f0(x)=G f g0(x), constructed as above and called
convoluted Poisson noise (CPN), is a Poissonian modification of the
Euclidean free field.
This mathematical argument deserves a physical justification: As

proven in ref. 6, the Euclidean quantum fields defined as CPN can be ana-
lytically continued to relativistic quantum fields with indefinite metric. (8)

Given that the covariance of CPN coincides with the covariance of the
Euclidean free field,5 the asymptotic particle structure of these quantum

5With intensity s2=z2 >R s2 dr(s). This should not be mixed up with the relations for the
scaling limit in Section 4.

fields (11) consists of free, relativistic particles of mass m and the scattering
behavior is trivial, since mass-shell singularities of the higher order trun-
cated Wightman functions are infra-particle like. (12) In this sense CPN
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is still a scattering free field. These truncated Wightman functions can
however be decomposed into direct integrals (over the mass-parameter) of
Wightman functions with non-trivial scattering. (6, 11) Further motivation in
favor of Poissonization will be given in Section 4.
To finish this section, we consider the path properties of the con-

voluted Poisson noise field f0(x): From the exponential decay |G(x)| ’
e−m |x| as xQ. and the Borel–Cantelli Lemma one gets that with probabil-
ity one the expression

f0(x)=C
.

n=1
C
NzLn

j=1
Sj, nG(x−YLn, j) (4)

is summable if x does not coincide with any of the YLn, j. Only in the
latter points the random field f0(x) has locally integrable singularities
’ |x−YLn, j |

−d+1 as G(x) ’ |x|−d+1 at 0. By this analysis we conclude that
f0(x) with probability one is given by a locally integrable function. This is
the basic difference with the Gaussian case, where the path properties of
the Euclidean free field depend crucially on the dimension and for d \ 2
cannot be represented by functions, cf. e.g., ref. 13.

3. LOCAL INTERACTIONS AND INTERPRETATION AS PARTICLE

SYSTEMS

Let v: RQ R be a function such that |vŒ(f)| < C -f ¥ R. Then v
induces a (nonlinear) transform on the space of locally integrable func-
tions6 via f(x)Q v(f(x)). Let now n0 be the probability measure on the

6 Symbols as f and g without subscripts and superscripts are used for sample paths (hence non-
random objects) in the space of locally integrable functions and signed measures with finite
support (in L), respectively, and are used as integration variables in (rigorous) integrals over
such path-, respectively charge-, configurations. The random processes (9) related to path- or
configuration space measures (defining these integrals) are denoted by f0, f0, L etc., resp.
g0, g0, L, depending on the measure. Likewise, sj, yj, n etc. are non random coordinates
parametrizing g while Sj, L, Yj, L, N

z
L are the related random objects parametrizing g0, L

space of locally integrable functions associated with the convoluted Poisson
white noise f0(x). (6, 9) Then

dnL(f)=
exp{−l >L v(f(x)) dx}

> exp{−l >L v(f(x)) dx} dn0(f)
dn0(f) (5)

defines a new measure nL on the space of locally integrable functions. Here,
L ı Rd is a bounded region and plays the role of an infra-red cut-off and l \ 0
is the coupling constant. As v(f(x)) is locally integrable, the expression (5)
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requires no further regularization, not even Wick ordering. Thus, for con-
voluted Poisson noise there exists a class of local potentials which is UV-
finite independently of the dimension d \ 1. This is in striking contrast to
the Gaussian case. It should however be mentioned that the condition
|vŒ| < C, which also implies that the denominator in (5) is finite, excludes
polynomial potentials requiring regularization also in the Poisson case.
However, trigonometric potentials, as the sine-Gordon potential, used in
refs. 2 and 3 as perturbations of free fields, exist in our Poisson case inde-
pendently of the dimension.
We now want to give a statistical mechanics interpretation to (5):

g0, L(x) in (2) is interpreted as the random process describing N
z
L classical,

indistinguishable and noninteracting particles with positions YL, j in the
‘‘box’’ L. The particle with the position YL, j carries the charge SL, j. As N

z
L

is Poisson distributed, the particle system is in the (configurational) grand
canonical ensemble (GCE) with activity z. The Euclidean Poisson quantum
field f0, L(x)=G f g0, L(x) has a natural interpretation as the static field of
the charge configuration g0, L(x), i.e., a unit charge in the point y gives rise
to a static field G(x−y) and the static field of a number of charges is then
obtained by superposition.
Next we extend this statistical mechanics interpretation to the inter-

acting case. Obviously, the interaction in (5) is given by the nonlinear
energy density v of the static field. To formulate this on the level of the
associated particle system, we find it more convenient to consider the par-
ticle system in the box g0, L(x) and the associated static field f0, L(x) instead
of using the infra-red cut-off in (5). Identifying g(x)=;n

j=1 sjd(x−yj) with
the non-ordered n-tuple {(y1, s1),..., (yn, sn)} we obtain as the interaction
term in the n-particle Hamiltonian (for the normalization v(0)=0)

U(g)=F
R
d
v(G f g(x)) dx

=U(y1,..., yn; s1,..., sn)

=F
R
d
v 1 C

n

j=1
sjG(x−yj)2 dx (6)

where the integral exists due to the exponential decay of G(x) as |x|Q..
Let n0, L be the measure associated with the Euclidean quantum field

f0, L(x) and let m0, L be the measure associated with the particle system in
the box g0, L(x). We then define in analogy with (5), however, as we are in a
finite volume, without additional infra-red cut-off

dñL(f)=
exp{−l >Rd v(f(x)) dx}

> exp{−l >Rd v(f(x)) dx} dn0, L(f)
dn0, L(f) (7)
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and likewise we define the Gibbs measure in the finite volume L as

dm̃L(g)=
exp{−lU(g)}

> exp{−lU(g)} dm0, L(g)
dm0, L(g) (8)

where g(x)=;n
j=1 sjd(x−yj) with n ¥N0, yj ¥ L and sj in the support of

the measure r. Let f̃L(x) be the Euclidean quantum field associated with
the measure ñL and g̃L(x) be the interacting particle system associated
with m̃L. Then, using (6)–(8) one obtains by setting f=G f g that f̃L(x) and
g̃L(x) are related via the generalized Poisson equation (1), hence f̃L(x) is
given by the static field of the interacting particle system g̃L(x).
One can now use techniques from the theory of Gibbs measures of

classical continuous particle systems to study the infinite volume limit
L ‘ Rd, cf. ref. 14 for the general strategy and ref. 10 for some first steps in
that direction.
Interestingly, one can formulate a number of well-known systems of

statistical mechanics as interacting Poisson quantum fields. Let r=d1, i.e.,
all charges take the value +1. Then e.g., the choice G=qBR , the character-
istic function of the ball centered at zero with radius R, and v(f)=0 if
f < 2, v(f)=. if f \ 2 gives a quantum field theoretic definition of the gas
of hard spheres, cf. (6). Likewise, taking G an arbitrary smooth function of
exponential decay with a singularity at 0 and v(f)=0 if f < C, C > 0, and
v(f)=1 if f \ C, respectively v(f(x))=d(f(x)−C) |Nf(x)|, we obtain the
field theoretic potentials defining the ‘‘trigger potential,’’ ‘‘isodensity contour
potential’’ respectively, from stochastic geometry. (15) Lastly, smearing out G
with a mollifier, we can see that the quadratic potential v(f)=f2 up to a
chemical potential yields a particle potential with two point interactions.7

7 In fact, a polynomial potential of degree n gives a potential which includes only j-point
interactions for j [ n. However, renormalization of such potentials for n > 2, when removing
the mollifier, is more delicate.

Removing the mollifier, the chemical potential diverges and has to be
renormalized similarly as in classical electrostatics. Further details on the
connections with classical statistical mechanics can be found in ref. 10.

4. THE GAUSSIAN SCALING LIMIT

In this section we consider the scaling limit zQ. with field strength
renormalization fQ f/`z. On the level of particle systems this can be seen
as the scaling zQ., i.e., the average number of particles per volume goes
to infinity, and the charges of the particles scale with 1/`z. We indicate
this scaling with a superscript z.
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If the particle system is noninteracting and the gas of particles is
neutral in average, i.e., >R s dr(s)=0, then, by the central limit theorem, we
get for a Schwartz test function f (note that NzL has expectation z |L| and
SL, jf(YL, j) are independent, identically distributed random variables with
expectation zero and variance >R s2 dr(s) >L f2(x) dx/|L|2),

Ogz0, L, fP=
1

`z
C
NzL

j=1
SL, jf(YL, j)|QL Ogg0, L, fP (9)

where gg0, L(x)=qL(x) g
g
0(x), s

2=>R s2 dr(s) and |QL stands for conver-
gence in probability law.
Likewise, using also (3) and (4), we get that Ogz0, fP|QL Ogg0 , fP and

Ofz0, fP|QL Ofg0 , fP. The latter scaling can equivalently be understood as a
scale and mass transformation xQ ax, mQ m/a in conjunction with a field
strength renormalization fQ a (d−2)/2f, with a=z1/dQ., cf. ref. 10. This
clearly is analogous to the block-spin transformation in lattice Euclidean
QFT. (5) In the general sense that the renormalization group describes a
process adding more and more micro-structures to a finite volume, we can
thus consider the scaling zQ. as an adequate implementation of the
renormalization group in our framework.
Next, we want to consider the scaling for interacting models starting

with UV-regularized models where G is replaced by GE=G f qE with a
mollifier qE Q d as EQ+0. We can construct a measure n

z, E
L as in (5) where

G is replaced by GE. As the theory now is UV-regularized, the related per-
turbed Gaussian measure ng, EL exists. For simplicity we also assume that v is
a bounded function. Let fz, EL (x) and f

g, E
L (x) be the Euclidean quantum

fields (random fields) determined by the measures nz, EL resp. n
g, E
L . We want

to show that Ofz, EL , fP|QL Ofg, EL , fP as zQ., i.e., that the UV-regularized
perturbed Poisson models converge to the related perturbed Gaussian ones.
To see this, we consider the Fourier transform of Ofz, EL , fP, with t ¥ R

> exp{itOf, fP−l >L v(f(x)) dx} dnz, E0 (f)
> exp{−l >L v(f(x)) dx} dnz, E0 (f)

(10)

Expanding the numerator in increasing powers of l we get as the nth coef-
ficient

1
n!

F
L
×n
F exp{itOf, fP} v(Of, qE, y1P) · · · v(Of, qE, ynP) dn

z
0(f) dy1 · · · dyn

(11)

where qE, y(x)=qE(x−y) and n
z
0 is the measure associated to f

z
0(x) (where

the latter random field has no UV-cut-off ). As fz0(x) converges in law to
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fg0(x) as zQ., we can replace in (11) dn
z
0(f) with dn

g
0(f) in that limit.

Furthermore, as the expansion in l converges uniformly (as v is bounded)
and the the denominator has a corresponding expansion with f=0, we can
replace in (10) dnz, E0 (f) with dn

g, E
0 (f) as zQ., which establishes our claim.

We now want to consider the same situation, but without UV-cut-off.
Furthermore, we concentrate ourselves on trigonometric potentials (2)

v(f)=F
R
cos(af) dr(a) (12)

with r a finite signed measure on R with r{0}=0. One can then show that
OfzL, fP|QL Ofg0 , fP, i.e., the scaling limit of the perturbed Poissonian
model is Gaussian (and thus physically trivial). (10) Here we want to give a
qualitative argument to explain this statement: The average path f(x) in
the support of nz0 with the increasing numbers of particles per volume of
the associated particle system has more and more points where the path is
behaving like G(x)/`z for xQ 0. As G at 0 is not square integrable, these
singularities have enough ‘‘volume’’ to make the average path more and
more singular, as due to the process zQ. more and more particles with
charge ’±1/`z are being added. Finally, all the area of L becomes
covered with singularities and the average absolute value of

F
L

v(f(x)) dx=F
R
F
L

cos(af(x)) dx dr(a) (13)

becomes smaller and smaller as the oscillations in the inner integral
integrate out to zero. In the limit zQ. then the potential converges to
zero (in law). This process eludicates the need of a renormalization proce-
dure for the potential in the limit zQ., i.e., in order to avoid triviality one
has to consider energy densities vz depending on the scaling parameter z.
The easiest case of such a renormalization is the coupling constant

renormalization of the sine-Gordon model in d=2 dimensions, see e.g.,
ref. 3. There, v(f)=cos(af) for a sufficiently small. To renormalize this
potential (which otherwise would lead to a trivial scaling limit) one sets

vz(f)= :cos(af):z=
cos(af)

> cos(aj(0)) dnz0(j)
(14)

The : :z-term in the middle is defined by the right hand side in the spirit of
the Wick-ordering of the cosine function in the Gaussian case. (2, 3)

One can then show that in a certain expansion the characteristic func-
tional (see (10)) of the process fzL(x) with interaction given by vz converges
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in any order of that expansion to the related expression for the sine-
Gordon model, cf. ref. 10 for further details.
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